sinxcosx/sinx cosx的积分为:∫(sinxcosx)/(sinx cosx)dx=(1/2)(-cosx sinx)-[1/(2√2)]ln|csc(x π/4)-cot(x π/4)| C,C为积分常数 。
解答过程如下:
∫(sinxcosx)/(sinx cosx)dx
=(1/2)∫(2sinxcosx)/(sinx cosx)dx
=(1/2)∫[(1 2sinxcosx)-1]/(sinx cosx)dx【sinxcosx/sinx cosx的积分 (x-sinxcosxsinx积分】
=(1/2)∫(sin2x 2sinxcosx cos2x)/(sinx cosx)dx-(1/2)∫dx/(sinx cosx)
=(1/2)∫(sinx cosx)2/(sinx cosx)dx-(1/2)∫dx/[√2sin(x π/4)]
=(1/2)∫(sinx cosx)dx-[1/(2√2)]∫csc(x π/4)dx
=(1/2)(-cosx sinx)-[1/(2√2)]ln|csc(x π/4)-cot(x π/4)| C
积分基本公式:
1、∫0dx=c
2、∫x^udx=(x^u 1)/(u 1) c
3、∫1/xdx=ln|x| c
4、∫a^xdx=(a^x)/lna c
5、∫e^xdx=e^x c
6、∫sinxdx=-cosx c
7、∫cosxdx=sinx c
8、∫1/(cosx)^2dx=tanx c
9、∫1/(sinx)^2dx=-cotx c