\[\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) = \mathbb{E}\left[ X ~ | ~ G_{n} \right] = \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{n}} \right]}{P(G_{n})} \qquad \qquad \mbox{if } w \in G_{n}\]首先,\(\mathbb{I}_{G_{n}}\)是一个随机变量,或者说函数:
\[\mathbb{I}_{G_{n}}: \Omega \longrightarrow \left\{ 0, 1 \right\}, \quad x \longrightarrow \mathbb{I}_{G_{n}}(x) = \begin{cases}1 \qquad \mbox{if } x \in G_{n}\\0 \qquad \mbox{otherwise}\end{cases}\]因此则可以判定,Conditional Expectation \(\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right]\) 算出来也是一个随机变量,而并非常数 。最后,我们可以发现一旦假设 \(w \in G_{n}\),那么一定意味着 \(w \notin G_{k}, ~ \forall k \in \mathbb{N}^{+}\setminus\left\{n\right\}\) 。
回到扔硬币的例子 。这里显然我们有:\(G_{1} = \left\{ HH, HT \right\}, ~ G_{2} = \left\{ TT, TH \right\}\),且 \(G_{1} \cup G_{2} = \Omega\) 。那么 。我们现在只需要依次:假设 \(w \in G_{n}\) 并求 \(\frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{n}} \right]}{P(G_{n})}\),最后将所有所求结果相加即可 。
\[\]
- 假设 \(w \in G_{1} = \left\{ HH, HT \right\}\),
- 假设 \(w \in G_{2} = \left\{ TT, TH \right\}\),
\[\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) = \begin{cases}\frac{a + b}{2} \qquad \mbox{if } ~ w \in \left\{ HH, HT \right\}\\\frac{c + d}{2} \qquad \mbox{if } ~ w \in \left\{ TT, TH \right\}\\\end{cases}\]
经验总结扩展阅读
- 全日制本科报名条件
- 两直线垂直的条件是什么
- 考研需要什么条件
- 邮政信用卡申请条件有什么
- 青岛首套贷款买房条件有什么
- 条件状语从句
- 加盟吉野家要什么条件
- 怎样开驾校
- 决定抗原物质免疫原性的条件
- 黑金卡怎么申请条件