\[\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) = \mathbb{E}\left[ X ~ | ~ G_{n} \right] = \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{n}} \right]}{P(G_{n})} \qquad \qquad \mbox{if } w \in G_{n}\]首先,\(\mathbb{I}_{G_{n}}\)是一个随机变量,或者说函数:
\[\mathbb{I}_{G_{n}}: \Omega \longrightarrow \left\{ 0, 1 \right\}, \quad x \longrightarrow \mathbb{I}_{G_{n}}(x) = \begin{cases}1 \qquad \mbox{if } x \in G_{n}\\0 \qquad \mbox{otherwise}\end{cases}\]因此则可以判定,Conditional Expectation \(\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right]\) 算出来也是一个随机变量,而并非常数 。最后,我们可以发现一旦假设 \(w \in G_{n}\),那么一定意味着 \(w \notin G_{k}, ~ \forall k \in \mathbb{N}^{+}\setminus\left\{n\right\}\) 。
回到扔硬币的例子 。这里显然我们有:\(G_{1} = \left\{ HH, HT \right\}, ~ G_{2} = \left\{ TT, TH \right\}\),且 \(G_{1} \cup G_{2} = \Omega\) 。那么 。我们现在只需要依次:假设 \(w \in G_{n}\) 并求 \(\frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{n}} \right]}{P(G_{n})}\),最后将所有所求结果相加即可 。
\[\]
- 假设 \(w \in G_{1} = \left\{ HH, HT \right\}\),
\[ \begin{align*} \mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) &= \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{1}}, ~ w \in G_{1} \right]}{P(G_{1})}\\ &= \frac{\sum\limits_{w \in G_{1}}\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{1}} ~ | ~ w \in G_{1} \right] \cdot P\big(\left\{ w \right\}\big)}{P(G_{1})}\\ &= \frac{\sum\limits_{w \in G_{1}} X(w) \cdot P\big(\left\{ w \right\}\big)}{P(G_{1})}\\ & = \frac{X(HH) \cdot P\big( \left\{ HH \right\} \big) + X(HT) \cdot P\big( \left\{ HT \right\} \big)}{P\big( \left\{ HH, HT \right\} \big)}\\ & = \frac{\frac{1}{4} \cdot a + \frac{1}{4} \cdot b}{\frac{1}{2}}\\ & = \frac{a + b}{2} \end{align*}\]
- 假设 \(w \in G_{2} = \left\{ TT, TH \right\}\),
\[ \begin{align*} \mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) &= \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{2}}, ~ w \in G_{2} \right]}{P(G_{2})}\\ &=\frac{\sum\limits_{w \in G_{2}}\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{2}} ~ | ~ w \in G_{2} \right] \cdot P\big(\left\{ w \right\}\big)}{P(G_{2})}\\ &= \frac{\sum\limits_{w \in G_{2}} X(w) \cdot P\big(\left\{ w \right\}\big)}{P(G_{2})}\\ & = \frac{X(TT) \cdot P\big( \left\{ TT \right\} \big) + X(TH) \cdot P\big( \left\{ TH \right\} \big)}{P\big( \left\{ TT, TH \right\} \big)}\\ & = \frac{\frac{1}{4} \cdot c + \frac{1}{4} \cdot d}{\frac{1}{2}}\\ & = \frac{c + d}{2} \end{align*}\]综上所述:
\[\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) = \begin{cases}\frac{a + b}{2} \qquad \mbox{if } ~ w \in \left\{ HH, HT \right\}\\\frac{c + d}{2} \qquad \mbox{if } ~ w \in \left\{ TT, TH \right\}\\\end{cases}\]
经验总结扩展阅读
-
-
-
事情有一种“反差”叫瘦了的关晓彤,实力证明“巴掌腰”有多细,P图师都懵了
-
-
龙椅|匪夷所思!故宫出现神秘怪事,外国人坐上龙椅后离奇死亡
-
-
-
陈默|《你安全吗》木桐和陈默的相互“隐瞒”,给了将军多少机会?
-
-
发型 山城小栗旬还是错付了,夸完自家客人一半水粉,jkl就换了新发型
-
-
2023年2月10日是什么日子 2023年正月廿十黄历查询
-
-
-
-
很多人都说女儿是父母的贴心小棉袄|女儿嫁过去之后,父母要多少彩礼?
-
-
-
厌食症|身材自卑疯狂减肥,再也吃不下东西,病态美可能是厌食症惹的祸
-
安杰|读《父母爱情》原著,才知:安杰对江德福没有爱情,只有认命