排列组合的计算公式是什么


排列组合的计算公式是什么

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
【排列组合的计算公式是什么 - 经验总结 www.jingyanzongjie.com】
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
扩展资料:
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示 。
计算公式:

此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1
组合的定义:从n个不同元素中 , 任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数 。用符号 C(n,m) 表示 。
计算公式:
;C(n,m)=C(n,n-m) 。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类 , 每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m) 。

经验总结扩展阅读