PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

论文信息

论文标题:Interpretable Rumor Detection in Microblogs by Attending to User Interactions论文作者:Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, Jing Jiang论文来源:2020,论文地址:download 论文代码:download
Background基于群体智能的谣言检测:Figure 1
PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

文章插图
本文观点:基于树结构的谣言检测模型,往往忽略了 Branch 之间的交互 。
1 IntroductionMotivation:a user posting a reply might be replying to the entire thread rather than to a specific user.
Mehtod:We propose a post-level attention model (PLAN) to model long distance interactions between tweets with the multi-head attention mechanism in a transformer network.
【PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》】We investigated variants of this model:
    • a structure aware self-attention model (StA-PLAN) that incorporates tree structure information in the transformer network;
    • a hierarchical token and post-level attention model (StA-HiTPLAN) that learns a sentence representation with token-level self-attention.
Contributions:
    • We utilize the attention weights from our model to provide both token-level and post-level explanations behind the model’s prediction. To the best of our knowledge, we are the first paper that has done this. 
    • We compare against previous works on two data sets - PHEME 5 events and Twitter15 and Twitter16 . Previous works only evaluated on one of the two data sets.
    • Our proposed models could outperform current state-ofthe-art models for both data sets.
目前谣言检测的类型:
(i) the content of the claim.
(ii) the bias and social network of the source of the claim.
(iii) fact checking with trustworthy sources.
(iv) community response to the claims.
2 Approaches2.1 Recursive Neural Networks观点:谣言传播树通常是浅层的,一个用户通常只回复一次 source post,而后进行早期对话 。
Dataset
Twitter15
Twitter16
PHEME
Tree-depth
2.80
2.77
3.12
2.2 Transformer NetworksTransformer 中的注意机制使有效的远程依赖关系建模成为可能 。
Transformer 中的注意力机制:
$\alpha_{i j}=\operatorname{Compatibility}\left(q_{i}, k_{j}\right)=\operatorname{softmax}\left(\frac{q_{i} k_{j}^{T}}{\sqrt{d_{k}}}\right)\quad\quad\quad(1)$
$z_{i}=\sum_{j=1}^{n} \alpha_{i j} v_{j}\quad\quad\quad(2)$
2.3 Post-Level Attention Network (PLAN)框架如下:
PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

文章插图
首先:将 Post 按时间顺序排列;
其次:对每个 Post 使用 Max pool 得到sentence embedding ;
然后:将 sentence embedding $X^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ 通过 $s$ 个多头注意力模块 MHA 得到 $U=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$;
最后:通过 attention 机制聚合这些输出并使用全连接层进行预测 :
$\begin{array}{l}\alpha_{k}=\operatorname{softmax}\left(\gamma^{T} u_{k}\right)&\quad\quad\quad(3)\\v=\sum\limits _{k=0}^{m} \alpha_{k} u_{k} &\quad\quad\quad(4)\\p=\operatorname{softmax}\left(W_{p}^{T} v+b_{p}\right) &\quad\quad\quad(5)\end{array}$
PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

文章插图
where $\gamma \in \mathbb{R}^{d_{\text {model }}}, \alpha_{k} \in \mathbb{R}$,$W_{p} \in \mathbb{R}^{d_{\text {model }}, K}$,$b \in \mathbb{R}^{d_{\text {model }}}$,$u_{k}$  is the output after passing through  $s$  number of MHA layers,$v$  and  $p$  are the representation vector and prediction vector for  $X$

经验总结扩展阅读