摘要:ACGAN-动漫头像生成是一个十分优秀的开源项目 。本文分享自华为云社区《【云驻共创】AI论文精读会:ACGAN-动漫头像生成》,作者:SpiderMan 。
1.论文及算法介绍1.1基本信息? 论文题目:《Conditional Image Synthesis With Auxiliary Classifier GANs》
? 出处:ICML 2017
? 作者:Augustus Odena、Christopher Olah、Jonathon Shlens
1.2研究背景GAN(Generative Adversarial Network)是由两个彼此对立训练的神经网络组成 。生成器G以随机噪声向量z作为输入然后输出-张图像G(z),判别器D接收训练图像或者是来自生成器的合成图像作为输入,输出在可能数据源上的条件概率分布D(x),他需要分别出真实的数据来源或者是生成的数据来源 。
使用标签的数据集应用于生成对抗网络可以增强现有的生成模型,并形成两种优化思路 。
? cGAN使用了辅助的标签信息来增强原始GAN,对生成器和判别器都使用标签数据进行训练,从而实现模型具备产生特定条件数据的能力 。
? SGAN的结构利用辅助标签信息(少量标签),利用判别器或者分类器的末端重建标签信息 。
ACGAN则是结合以上两种思路对GAN进行优化 。
1.3算法介绍1.3.1 ACGAN模型结构
文章插图
1.3.2损失函数? Ls是面向数据真实与否的代价函数 。
? Lc则是数据分类准确性的代价函数 。
在优化过程中希望判别器D能否使得Ls+Lc尽可能最大,而生成器G使得Lc-Ls尽可能最大 。
简而言之是希望判别器能够尽可能区分真实数据和生成数据并且能有效对数据进行分类,对生成器来说希望生成数据被尽可能认为是真实数据且数据都能够被有效分类 。
文章插图
1.3.3高分辨率如何评价一个生成模型生成图片的分辨率,最简单的方法无非就是直观用眼睛来看,但这样显然无法量化一个图片的好坏,于是作者提出使用一个分类器,若生成的图片具有较高的分类正确率,就有理由认为生成的图片质量比较高,也即该图片具有较高的可分辨性,如上所述,生成高分辨率的图片,需要不是简单的将低分辨率的图片进行线性插值来生成,因而要量化的分析生成的图片的质量,可以从其分辨力 。
从低分辨率通过插值生成的高分辨率图片,其本质上没有增加多余信息,只是低分辨率的模糊版 。结合这样的思路,高分辨率的图片提供了更多的信息,这些信息结合到AC-GAN结构,每个生成图片都有其对应的标签,因而这个更多的信息,可以通过分类来表明,也就是说更多的信息,可以用于分类,也就是文中所说的分辨力 。
因此,ACGAN提出Inception Accuracy,这种新的用于评判图像合成模型的标准,查看其被分类为正确类别的比率,以此来判定生成的图片质量 。图中,最上面给出了真实图片和基于ACGAN生成图片,可以明显感觉图片高分辨率对应高可分辨性 。
文章插图
文章插图
文章插图
1.3.4图像多样性GAN有个最常见的问题就是模式坍塌的问题,就是模型找到一种方式,无论输入的内容是什么,生成的图片都只有一种,然而这种图片能大概率欺骗过分辨器 。因而,产生的图片具有多样性,也是可以评估GAN模型好坏的指标 。
文中采用了图片的多尺度结构相似度来衡量图片与图片之间的相似度(multi-scale structural similarity,MS-SSIM),这个相似度在0和1之间取值,越大说明图片之间越相似;提及MS-SSIM的时候,往往也要提及SSIM,来看看它们具体是怎么计算的 。
经验总结扩展阅读
- 一文读懂 MySQL 索引
- 流浪方舟矿洞月读怎么打
- flinksql读写redis
- 关于文体之星的名言
- 戏命师烬,的拼音(戏命师烬怎么读)
- 烬,这个字怎么读,什么意思(烬这个字是什么意思)
- 旃檀燃烬怎样读(唐僧为什么被封为旃檀功德佛)
- 烬,字怎么读啊(烬这个字的读音)
- 烬字广州话怎么读(烬是什么字)
- 烬字怎么读啊(烬的同音字)