谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》( 二 )


其中:

    • $\mathbf{S}_{G}\in \mathbb{R}^{d \times K}$ 和 $\mathbf{S}_{T} \in \mathbb{R}^{d \times K}$ 分别代表了 基于结构信息和基于语义信息的可训练质心矩阵;
    • $\mathbf{a}_{1}\in\{0,1\}^{K}$ 和 $\mathbf{a}_{2} \in\{0,1\}^{K}$ 代表了聚类分配;
    • $E_{1}$ 和  $E_{2}$ 代表了编码器;
因此,建立了一组最优的集群分配 $\left\{\mathbf{a}_{1}^{*}, \mathbf{a}_{2}^{*} \mid c \in \mathcal{C}\right\}$ 作为伪标签或监督信号,以增强帖子的表示,如下所示:$\mathcal{L}_{\mathrm{ssl}}=\sum\limits _{c \in C} l\left(f_{1}\left(E_{1}(\mathbf{g})\right), \mathbf{a}_{2}\right)+l\left(f_{2}\left(E_{2}(\mathbf{t})\right), \mathbf{a}_{1}\right) \quad\quad\quad(12)$
其中,$l(\cdot)$ 是 negative log-softmax function $l(\cdot) = -\operatorname{LogSoftmax}\left(x_{i}\right)=\log \left(\frac{\exp \left(x_{i}\right)}{\sum\limits _{j} \exp \left(x_{j}\right)}\right)$,$f_{1}(\cdot)$ 、$f_{2}(\cdot)$是一个可训练的分类器 。
PSCD 和 PSID 的处理过程如 Figure 3 :
谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图
2.4 Rumor Prediction我们在 post  $c$ 的传播表示 $g$ 的基础上建立了一个谣言检测器模型:$p(c)=\sigma(\mathbf{W} \mathbf{g}+\mathbf{b})\quad\quad\quad(13)$
采用交叉熵做分类损失:$\mathcal{L}_{\text {main }}=-\sum\limits_{c \in C} y \log (p(c))\quad\quad\quad(14)$总损失:$\mathcal{L}=\mathcal{L}_{\text {main }}+\lambda \mathcal{L}_{\text {ssl }}\quad\quad\quad(15)$算法流程 如 Algorithm 1 所示:
谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图
3 Experiments and Analyses3.1 Dataset
谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图
3.2 Result
谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图

谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图

谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图
3.3 Ablation Analysis
谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图

谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图

谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图

谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图

谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

文章插图
【谣言检测《Rumor Detection with Self-supervised Learning on Texts and Social Graph》】

经验总结扩展阅读