[INFO] 2022-11-11 14:38:49,133 [link_predict.py:199]: Step 170 Train Loss: 0.454199 Train AUC: 0.954936[INFO] 2022-11-11 14:38:49,260 [link_predict.py:223]:Step 170 Test Loss: 0.454974 Test AUC: 0.954118[INFO] 2022-11-11 14:38:51,997 [link_predict.py:199]: Step 180 Train Loss: 0.452219 Train AUC: 0.955133[INFO] 2022-11-11 14:38:52,122 [link_predict.py:223]:Step 180 Test Loss: 0.453069 Test AUC: 0.954312[INFO] 2022-11-11 14:38:54,851 [link_predict.py:199]: Step 190 Train Loss: 0.450969 Train AUC: 0.955254[INFO] 2022-11-11 14:38:54,978 [link_predict.py:223]:Step 190 Test Loss: 0.451892 Test AUC: 0.954428[INFO] 2022-11-11 14:38:57,714 [link_predict.py:199]: Step 200 Train Loss: 0.450440 Train AUC: 0.955305[INFO] 2022-11-11 14:38:57,842 [link_predict.py:223]:Step 200 Test Loss: 0.451436 Test AUC: 0.954473
1. 回顾并总结了图的基本概念 。<br>2. 学习思考算法实现的代码思路--Node2Vec的实现以及RandomWalk的实现 。<br>3. 对源码阅读能力的提升 。<br>其它相关笔记:<br>关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二):https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1<br>* 如果我的项目对你有帮助不如点一个心 , fork一下 , 以备可以常复习哦!