爱因斯坦场方程
1.爱因斯坦场方程: R_uv-1/2*R*g_uv=κ*T_uv (Rμν-(1/2)gμνR=8GπTμν/(c*c*c*c) -gμν) 说明:g_uv为度规,κ为系数,可由低速的牛顿理论来确定 。”_”后字母为下标,”^”后字母为上标 。意义:空间物质的能量-动量(T_uv)分布=空间的弯曲状况(R_uv) 解的形式是:ds^2=Adt^2+Bdr^2+Cdθ^2+Ddφ^2 式中A,B,C,D为度规g_uv分量 。考虑能量-动量张量T_uv的解比较复杂 。最简单的就是让T_uv等于0,对于真空静止球对称外部的情况,则有施瓦西外解 。如果是该球体内部的情况 , 或者是考虑球体轴对称的旋转,就稍微复杂一点 。还有更复杂的星云内部或外部的情况,星云内部的星球还要运动、转动等 。这些因素都要影响到星云内部的曲面空间 。
【世界上最让人震惊的物理公式,世界上最著名的100个物理公式】
2.含宇宙常数项的场方程: R_uv-1/2*R*g_uv+Λ*g_uv=κ*T_uv 此处的Λ是宇宙常数,其物理意义是宇宙真空场 。Λ*g_uv为宇宙项 。如果从数学上理解的话,则上面的场方程也可解出下面的形式: ds^2=Adt^2+Bdr^2+Cdθ^2+Ddφ^2 式中A,B,C,D为度规g_uv分量 。这里的ds就是表达空间弯曲程度的一小段距离 。同时因为4维空间与时间有关,ds随时间也会变化 。这时,如果没有宇宙项,ds随时间是增大的,宇宙就是膨胀的 。如果加了宇宙项,选取适当的Λ值,ds不随时间变化,宇宙就是稳定的 。如果从物理意义上理解的话,把宇宙项移到式右边,则是: R_uv-1/2*R*g_uv=κ*T_uv-Λ*g_uv Λ项为负值,起到了斥力的作用,即宇宙真空场与普通物质场之间存在着斥力 。宇宙项和通常物质场的引力作用起到了平衡的作用,所以可得到稳定的宇宙解 。