(6)后处理(postrocess)
使用NMSBoxes函数过滤掉重复识别的区域 。
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold) for i in indices: box = boxes[i] left = box[0] top = box[1] width = box[2] height = box[3] drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
(7)画出检测到的对象
def drawPred(classId, conf, left, top, right, bottom): # Draw a bounding box. cv.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert(classId < len(classes)) label = '%s:%s' % (classes[classId], label) #Display the label at the top of the bounding box labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255))
(8)完整源码及检测结果(cv_call_yolo.py)
import cv2cv=cv2import numpy as npimport timenet = cv2.dnn.readNetFromDarknet("yolov3/yolov3.cfg", "yolov3/yolov3.weights")net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)?confThreshold = 0.5 #Confidence thresholdnmsThreshold = 0.4 #Non-maximum suppression thresholdframe=cv2.imread("dog.jpg")classesFile = "coco.names";classes = Nonewith open(classesFile, 'rt') as f: classes = f.read().rstrip('\n').split('\n')?def getOutputsNames(net): # Get the names of all the layers in the network layersNames = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layersNames[i - 1] for i in net.getUnconnectedOutLayers()]print(getOutputsNames(net))# Remove the bounding boxes with low confidence using non-maxima suppression?def postprocess(frame, outs): frameHeight = frame.shape[0] frameWidth = frame.shape[1] classIds = [] confidences = [] boxes = [] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. classIds = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] classId = np.argmax(scores) confidence = scores[classId] if confidence > confThreshold: center_x = int(detection[0] * frameWidth) center_y = int(detection[1] * frameHeight) width = int(detection[2] * frameWidth) height = int(detection[3] * frameHeight) left = int(center_x - width / 2) top = int(center_y - height / 2) classIds.append(classId) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with # lower confidences. print(boxes) print(confidences) indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold) for i in indices: #print(i) #i = i[0] box = boxes[i] left = box[0] top = box[1] width = box[2] height = box[3] drawPred(classIds[i], confidences[i], left, top, left + width, top + height)? # Draw the predicted bounding boxdef drawPred(classId, conf, left, top, right, bottom): # Draw a bounding box. cv.rectangle(frame, (left, top), (right, bottom), (0, 0, 255)) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert(classId < len(classes)) label = '%s:%s' % (classes[classId], label) #Display the label at the top of the bounding box labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255))blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), [0,0,0], 1, crop=False)t1=time.time()net.setInput(blob)outs = net.forward(getOutputsNames(net))print(time.time()-t1)postprocess(frame, outs)t, _ = net.getPerfProfile()label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))cv2.imshow("result",frame)?
经验总结扩展阅读
- 谣言检测《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》
- ClaHi-GAT 谣言检测《Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks》
- 手把手教你玩转 Gitea|在 Windows 系统上安装 Gitea
- PSIN 谣言检测——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》
- 含源码 手把手教你使用LabVIEW OpenCV dnn实现图像分类
- PLAN 谣言检测——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》
- 15 JavaObject类
- 含源码 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别
- PSA 谣言检测——《Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks》
- 含源码 手把手教你使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用